Pearson
Edexcel

Mark Scheme (Results)

January 2021
Pearson Edexcel International Advanced Level In Further Pure Mathematics F3
(WFM03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WFM03_01_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for ‘knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \quad or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Alternative 2 using scalar product:

$$
\pm \overrightarrow{A B}= \pm\left(\begin{array}{r}
4 \\
-4 \\
-1
\end{array}\right), \pm \overrightarrow{B C}= \pm\left(\begin{array}{r}
-1 \\
5 \\
2
\end{array}\right), \pm \overrightarrow{A C}= \pm\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)
$$

Attempts any 2 of these vectors
A to $B C$ is $\sqrt{A B^{2}-\left(\frac{\overrightarrow{A B} \cdot \overrightarrow{B C}}{B C}\right)^{2}}=\sqrt{\frac{157}{15}}$
B to $C A$ is $\left.\sqrt{B C^{2}-\left(\frac{\text { or }}{C A} \cdot \overrightarrow{C A}\right.}\right)^{2} \quad=\sqrt{\frac{314}{11}}$
or
C to $B A$ is $\sqrt{A C^{2}-\left(\frac{\overrightarrow{A C} \cdot \overrightarrow{A B}}{A B}\right)^{2}}=\sqrt{\frac{314}{33}}$
Attempts one of the altitudes of triangle $A B C$ using a correct method
Area $=\frac{1}{2} \sqrt{30} \sqrt{\frac{157}{15}}=\frac{1}{2} \sqrt{314}$
or
Area $=\frac{1}{2} \sqrt{11} \sqrt{\frac{314}{11}}=\frac{1}{2} \sqrt{314}$
or
Area $=\frac{1}{2} \sqrt{33} \sqrt{\frac{314}{33}}=\frac{1}{2} \sqrt{314}$
Correct exact area. Allow work in decimals as long as a correct exact area is found.
-

Alternative 3 using vector products:

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}
0 \\
4 \\
-16
\end{array}\right), \mathbf{b} \times \mathbf{c}=\left(\begin{array}{c}
0 \\
-8 \\
20
\end{array}\right), \mathbf{c} \times \mathbf{a}=\left(\begin{array}{c}
-3 \\
-3 \\
12
\end{array}\right)
$$

Attempts these vector products

$$
\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{a}=\left(\begin{array}{l}
-3 \\
-7 \\
16
\end{array}\right)
$$

Adds the appropriate vector products
Area $=\frac{1}{2} \sqrt{3^{2}+7^{2}+16^{2}}=\frac{1}{2} \sqrt{314}$
Correct exact area. Allow work in decimals as long as a correct exact area is found.

Question Number	Scheme Notes	Marks
(b)	$\begin{gathered} \pm \overrightarrow{A D}= \pm\left(\begin{array}{c} 2 \\ -2 \\ k-1 \end{array}\right), \pm \overrightarrow{B D}= \pm\left(\begin{array}{r} -2 \\ 2 \\ k \end{array}\right), \pm \overrightarrow{C D}= \pm\left(\begin{array}{c} -1 \\ -3 \\ k-2 \end{array}\right) \\ \text { Attempts one of these vectors } \end{gathered}$	M1
	$\begin{aligned} & \text { E.g. } \overrightarrow{A B} \times \overrightarrow{A C} \cdot \overrightarrow{A D}=\left(\begin{array}{c} -3 \\ -7 \\ 16 \end{array}\right) \bullet\left(\begin{array}{c} 2 \\ -2 \\ k-1 \end{array}\right)=-6+14+16 k-16 \\ & \text { E.g. } \overrightarrow{A B} \times \overrightarrow{A C} \cdot \overrightarrow{B D}=\left(\begin{array}{l} -3 \\ -7 \\ 16 \end{array}\right) \bullet\left(\begin{array}{r} -2 \\ 2 \\ k \end{array}\right)=6-14+16 k \\ & \text { E.g. } \overrightarrow{A B} \times \overrightarrow{A C} \cdot \overrightarrow{C D}=\left(\begin{array}{l} -3 \\ -7 \\ 16 \end{array}\right) \bullet\left(\begin{array}{c} -1 \\ -3 \\ k-2 \end{array}\right)=3+21+16 k-32 \end{aligned}$ Attempts a suitable triple product to obtain a scalar quantity ($\frac{1}{6}$ not required here). They must be forming the triple product correctly e.g. not the magnitude of a vector. Do not be too concerned if they make slips as long as appropriate vectors are being used and a scalar quantity is obtained. Must be an attempt at the tetrahedron $A B C D$.	dM1
	Volume $=\frac{1}{3}\|8 k-4\| \quad \|$Correct volume. Must see modulus and must be 2 terms but allow equivalents e.g. $\frac{4}{3}\|2 k-1\|, \frac{1}{6}\|16 k-8\|, \frac{1}{6}\|8-16 k\|$ Award once a correct answer is seen and apply isw if necessary.	A1
		(3)
		Total 6

Question Number	Scheme	Notes	Marks
2(a)	$\begin{gathered} y=\ln (\tanh 2 x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\tanh 2 x} \times 2 \operatorname{sech}^{2} 2 x \\ \\ \text { or } \\ y=\ln (\tanh 2 x) \Rightarrow \mathrm{e}^{y}=\tanh 2 x \Rightarrow \mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \operatorname{sech}^{2} 2 x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \operatorname{sech}^{2} 2 x}{\tanh 2 x} \end{gathered}$ M1: Applies the chain rule or eliminates the "ln" and differentiates implicitly to obtain to obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k \operatorname{sech}^{2} 2 x}{\tanh 2 x}$ A1: Correct derivative in any form Note that some candidates now convert to exponential form to complete this part - see below in the alternative for scoring the final M1A1		M1A1
	$=\frac{2 \cosh 2 x}{\sinh 2 x} \times \frac{1}{\cosh ^{2} 2 x}=\frac{2}{\sinh 2 x \cosh 2 x}$	Converts to $\sinh 2 x$ and $\cosh 2 x$ correctly to obtain $\frac{k}{\sinh 2 x \cosh 2 x}$	M1
	$=\frac{2}{\frac{1}{2} \sinh 4 x}=4 \operatorname{cosech} 4 x$	Correct answer. Note that this is not a given answer so you can allow if e.g. a sinh becomes a sin but is then recovered but if there are any obvious errors this mark should be withheld.	A1
			(4)
Alternative using exponentials:			
	$\begin{gathered} y=\ln (\tanh 2 x)=\ln \left(\frac{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}\right) \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}\left(\frac{\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}+2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}\right)}{\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)^{2}}\right) \\ \text { or } \\ y=\ln (\tanh 2 x)=\ln \left(\frac{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}\right)=\ln \left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)-\ln \left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right) \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \mathrm{e}^{2 x}+2 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}-\frac{2 \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}} \end{gathered}$ M1: Writes $\tanh 2 x$ correctly in terms of exponentials and applies the chain rule and quotient rule or uses the subtraction law of logs and applies the chain rule A1: Correct derivative in any form		M1A1
	$=\frac{2\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)^{2}-2\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}$	$-=\frac{8}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}} \quad \text { Obtains } \frac{k}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}$	M1
	$=\frac{4}{\sinh 4 x}=4 \operatorname{cosech} 4 x$	Correct answer. Note that this is not a given answer so you can allow if e.g. a sinh becomes a sin but is then recovered but if there are any obvious errors this mark should be withheld.	A1

(b) Way 1	$4 \operatorname{cosech} 4 x=1 \Rightarrow \sinh 4 x=4 \Rightarrow 4 x=\ln \left(4+\sqrt{4^{2}+1}\right)$ Changes to $\sinh 4 x=\ldots$ and uses the correct logarithmic form of arsinh to reach $4 x=$..	M1
	$x=\frac{1}{4} \ln (4+\sqrt{17})$ $\begin{array}{l}\text { This value only. } \\ \text { Allow e.g. } x=\ln (4+\sqrt{17})^{\frac{1}{4}}\end{array}$	A1
		(2)
(b) Way 2	$4 \operatorname{cosech} 4 x=1 \Rightarrow 4 \times \frac{2}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}=1 \Rightarrow \mathrm{e}^{8 x}-8 \mathrm{e}^{4 x}-1=0$ Changes to the correct exponential form to reach $\frac{k}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}$, obtains a 3 TQ in $\mathrm{e}^{4 x}$, solves and takes \ln 's to reach $4 x=\ldots$ (usual rules for solving a 3 TQ do not apply as long as the above conditions are met)	M1
	$x=\frac{1}{4} \ln (4+\sqrt{17})$ This value only. Allow e.g. $x=\ln (4+\sqrt{17})^{\frac{1}{4}}$	A1
		(2)
		Total 6

Question Number	Scheme Notes	Marks
3(a)	$\mathbf{A}=\left(\begin{array}{lll}2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2\end{array}\right)$	
	$\begin{aligned} \|\mathbf{A}\| & =2(4-2 k)-k(4-k)+2(4-2)=0 \\ & \Rightarrow k^{2}-8 k+12=0 \Rightarrow k=\ldots \end{aligned}$ Attempts $\operatorname{det} \mathbf{A}=0$ and solves 3 TQ to obtain 2 values for k Note that the usual rules for solving a 3TQ do not need to be applied as long as 2 values for k are obtained. The attempt at the determinant should be a correct expression for their row or column so allow errors only when collecting terms Note that the rule of Sarrus gives $8+k^{2}+8-4-4 k-4 k=0$	M1
	$k=2,6 \quad$ Correct values.	A1
	Marks for part (a) can only be scored in their attempt at (a) and not recovered from part (b)	
		(2)
(b)	$\left(\begin{array}{ccc} 2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} 4-2 k & 4-k & 2 \\ 2 k-4 & 2 & 4-k \\ k^{2}-4 & 2 k-4 & 4-2 k \end{array}\right) \rightarrow\left(\begin{array}{ccc} 4-2 k & k-4 & 2 \\ 4-2 k & 2 & k-4 \\ k^{2}-4 & 4-2 k & 4-2 k \end{array}\right)$ Applies the correct method to reach at least a matrix of cofactors Should be an attempt at the minors followed by $\left(\begin{array}{ccc}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right)$ If there is any doubt then look for at least 6 correct cofactors	M1
	$\left(\begin{array}{ccc} 4-2 k & k-4 & 2 \\ 4-2 k & 2 & k-4 \\ k^{2}-4 & 4-2 k & 4-2 k \end{array}\right) \rightarrow\left(\begin{array}{ccc} 4-2 k & 4-2 k & k^{2}-4 \\ k-4 & 2 & 4-2 k \\ 2 & k-4 & 4-2 k \end{array}\right)$ dM1: Attempts adjoint matrix by transposing. Dependent on previous mark. A1: Correct adjoint	dM1 A1
	$\mathbf{A}^{-1}=\frac{1}{k^{2}-8 k+12}\left(\begin{array}{ccc} 4-2 k & 4-2 k & k^{2}-4 \\ k-4 & 2 & 4-2 k \\ 2 & k-4 & 4-2 k \end{array}\right)$ Fully correct inverse or follow through their incorrect determinant from part (a) where their determinant is a function of k	A1ft
	Ignore any labelling of the matrices and allow any type of brackets around the matrices	
		(4)
		Total 6

Question Number	Scheme Notes	Marks
4	$\begin{gathered} x=4 \cosh \theta \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=4 \sinh \theta \\ \Rightarrow \int \frac{1}{\left(x^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} x=\int \frac{4 \sinh \theta}{\left(16 \cosh ^{2} \theta-16\right)^{\frac{3}{2}}} \mathrm{~d} \theta \end{gathered}$ Full attempt to use the given substitution. Award for $\int \frac{1}{\left(x^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} x=k \int \frac{\sinh \theta}{\left((4 \cosh \theta)^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} \theta$ Condone $4 \cosh ^{2} \theta$ for $(4 \cosh \theta)^{2}$	M1
	$=\int \frac{4 \sinh \theta}{\left(16 \sinh ^{2} \theta\right)^{\frac{3}{2}}} \mathrm{~d} \theta=\int \frac{4 \sinh \theta}{64 \sinh ^{3} \theta} \mathrm{~d} \theta$ Simplifies $\left(16 \cosh ^{2} \theta-16\right)^{\frac{3}{2}}$ to the form $k \sinh ^{3} \theta$ which may be implied by: $\int \frac{1}{\left(x^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} x=k \int \frac{1}{\sinh ^{2} \theta} \mathrm{~d} \theta$ Note that this is not dependent on the first M	M1
	$=\int \frac{1}{16 \sinh ^{2} \theta} \mathrm{~d} \theta$ Fully correct simplified integral. Allow equivalents e.g. $\frac{1}{16} \int \operatorname{cosech}^{2} \theta \mathrm{~d} \theta, \int \frac{1}{(4 \sinh \theta)^{2}} \mathrm{~d} \theta, \int(4 \sinh \theta)^{-2} \mathrm{~d} \theta$ etc. May be implied by subsequent work.	A1
	$=\int \frac{1}{16 \sinh ^{2} \theta} \mathrm{~d} \theta=\frac{1}{16} \int \operatorname{cosech}^{2} \theta \mathrm{~d} \theta=-\frac{1}{16} \operatorname{coth} \theta(+c)$ Integrates to obtain $k \operatorname{coth} \theta$. Depends on both previous method marks.	dM1
	$=-\frac{1}{16} \frac{\cosh \theta}{\sinh \theta}+c=-\frac{1}{16} \frac{\frac{x}{4}}{\sqrt{\frac{x^{2}}{16}-1}}+c \text { or e.g. }-\frac{1}{4} \frac{\frac{x}{4}}{\sqrt{x^{2}-16}}+c$ Substitutes back correctly for x by replacing $\cosh \theta$ with $\frac{x}{4}$ or equivalent e.g. $4 \cosh \theta$ with x and $\sinh \theta$ with $\sqrt{\left(\frac{x}{4}\right)^{2}-1}$ or equivalent e.g. $4 \sinh \theta$ with $\sqrt{x^{2}-16}$ Depends on all previous method marks and must be fully correct work for their " $-\frac{1}{16} "$	dM1
	$\frac{-x}{16 \sqrt{x^{2}-16}}(+c)$ oe e.g. $\frac{-\frac{1}{16} x}{\sqrt{x^{2}-16}}(+c) \quad$Correct answer. Award once the correct answer is seen and apply isw if necessary. Condone the omission of " $+c$ "	A1
	Note that you can condone the omission of the " d " " throughout	
		(6)
		Total 6

Question Number	Scheme	Notes	Marks
	Mark (a) and (b) together but do not credit work for (a) that is seen in (c)		
5(a)	$\left(\begin{array}{rrr} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 8 x \\ 8 y \\ 8 z \end{array}\right) \text { or }$ Correct method for	$\left.\begin{array}{ll} -2 & -1 \\ -2 & -1 \\ -1 & -3 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots$ taining the eigenvector	M1
	\mathbf{i} - \mathbf{j}	Any multiple of this vector	A1
			(2)
(b)	$\begin{gathered} \|\mathbf{M}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} 6-\lambda & -2 & -1 \\ -2 & 6-\lambda & -1 \\ -1 & -1 & 5-\lambda \end{array}\right\| \\ \Rightarrow \underline{(6-\lambda)} \underline{\underline{((6-\lambda)(5-\lambda)-1)}} \underline{\underline{2}} \underline{\underline{(2(\lambda-5)-1)} \underline{\underline{1(2+6-\lambda)}}} \underline{\underline{(2(2)}} \end{gathered}$ Correct attempt at the determinant of $\mathbf{M}-\lambda \mathbf{I}$. The terms with single underlining should be correct with correct signs but allow minor slips in the brackets with double underlining. Note that the rule of Sarrus gives $(6-\lambda)(6-\lambda)(5-\lambda)-2-2-(6-\lambda)-(6-\lambda)-4(5-\lambda)$		M1
	$\Rightarrow \lambda^{3}-17 \lambda^{2}+90 \lambda-144=0 \Rightarrow \lambda=\ldots$	Solves $\mathbf{M}-\lambda \mathbf{I}=0$ to obtain 2 different distinct real eigenvalues excluding 8	M1
	$\Rightarrow \lambda=3,6,(8)$	For 3 and 6	A1
			(3)

Question Number	Scheme Notes	Marks
(c)	$(\mathbf{D}=)\left(\begin{array}{lll}8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6\end{array}\right) \quad$Correct \mathbf{D} with distinct non-zero eigenvalues in any order. Follow through their non-zero 3 and 6. Ignore labelling and score for sight of the correct or correct ft matrix.	B1ft
	$\begin{aligned} & \left(\begin{array}{rrr} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 3 x \\ 3 y \\ 3 z \end{array}\right) \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots \quad \text { NB } \mathbf{v}_{2}=k\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \\ & \left(\begin{array}{rrr} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 6 x \\ 6 y \\ 6 z \end{array}\right) \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots \quad \mathrm{NB} \mathbf{v}_{3}=k\left(\begin{array}{c} 1 \\ 1 \\ -2 \end{array}\right) \end{aligned}$ Attempts eigenvectors for their other 2 distinct eigenvalues not including 8 May use e.g. $(\mathbf{M}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$	M1
	$(\mathbf{P}=)\left(\begin{array}{rrr} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{array}\right)$ Forms a complete \mathbf{P} from normalised eigenvectors using their eigenvector from part (a) and their other 2 eigenvectors formed from their other 2 different distinct eigenvalues in any order. Ignore labelling and score for forming this matrix which may be seen as part of a calculation.	M1
	$\mathbf{D}=\left(\begin{array}{lll} 8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{array}\right) \text { and } \mathbf{P}=\left(\begin{array}{rrr} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{array}\right)$ All fully correct and consistent and correctly labelled but the labelling may be implied by their working.	A1
		(4)
		Total 9

Question Number	Scheme Notes	Marks
$\begin{gathered} \text { 6(a) } \\ \text { Way } 1 \end{gathered}$	$\int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x=\int x^{n-1} x\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \text { or } \int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x=\int x^{n-1} \mathrm{~d}\left(x^{2}+3\right)^{\frac{1}{2}}$ Applies $x^{n}=x^{n-1} \times x$ to $\int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x$ but may be implied by subsequent work	M1
	$\int x^{n-1} x\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x=x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\int(n-1) x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x$ dM1: Applies integration by parts to obtain $\alpha x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\beta \int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x$ ($\mathrm{NB} \alpha, \beta$ may be functions of n) Note that if a correct formula for parts is quoted first and parts is applied in the correct direction then we can condone slips in signs as long as the expression is of the above form. If you are unsure - send to review. A1: Correct expression	dM1A1
	$=x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\int(n-1) x^{n-2}\left(x^{2}+3\right)\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x$ Applies $\left(x^{2}+3\right)^{\frac{1}{2}}=\left(x^{2}+3\right)\left(x^{2}+3\right)^{-\frac{1}{2}}$ having made an attempt at integration by parts in the correct direction	M1
	$\begin{aligned} =x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}} & -(n-1) \int x^{n}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x-3(n-1) \int x^{n-2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \\ & =x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-(n-1) I_{n}-3(n-1) I_{n-2} \end{aligned}$ Splits into 2 integrals involving I_{n} and I_{n-2} Depends on all the previous method marks	dM1
	$\Rightarrow I_{n}=\frac{x^{n-1}}{n}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{3(n-1)}{n} I_{n-2} *$ Obtains the printed answer. You can condone the odd missing " $\mathrm{d} x$ " but if there are any clear errors e.g. invisible brackets that are not recovered, sign errors etc. then this mark should be withheld.	A1*
		(6)

Question Number	Scheme Notes	Marks
6(a) Way 2	$\begin{gathered} \int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x=\int x^{n-2} x^{2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \\ \text { Applies } x^{n}=x^{n-2} \times x^{2} \end{gathered}$	M1
	$\begin{gathered} \int x^{n-2} x^{2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x=\int x^{n-2}\left(x^{2}+3-3\right)\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \\ =\int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x-\int 3 x^{n-2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \end{gathered}$ $\mathbf{d M 1}$: Writes x^{2} as $\left(x^{2}+3-3\right)$ to obtain $\alpha \int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x-\beta \int x^{n-2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x$ A1: Correct expression	dM1A1
	$\begin{aligned} & \int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x=\frac{x^{n-1}}{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{1}{n-1} \int x^{n}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \\ & \text { Applies integration by parts on } \int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x \text { to obtain } \\ & \qquad \alpha x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\beta \int x^{n}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \end{aligned}$ Note that if a correct formula for parts is quoted first and parts is applied in the correct direction then we can condone slips in signs as long as the expression is of the above form. If you are unsure - send to review.	M1
	$I_{n}=\frac{x^{n-1}}{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{1}{n-1} I_{n}-3 I_{n-2}$ Brings all together and introduces I_{n} and I_{n-2} Depends on all the previous method marks	dM1
	$\Rightarrow I_{n}=\frac{x^{n-1}}{n}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{3(n-1)}{n} I_{n-2} *$ Obtains the printed answer. You can condone the odd missing " $\mathrm{d} x$ " but if there are any clear errors e.g. invisible brackets that are not recovered, sign errors etc. then this mark should be withheld.	A1*

Question Number	Scheme Notes	Marks
(b) Way 1	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5} I_{3}$ Applies the reduction formula once to obtain I_{5} in terms of I_{3} Allow slips on coefficients only	M1
	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3} I_{1}\right)$ Applies the reduction formula again to obtain an expression for I_{5} in terms of I_{1} and allow " I_{1} "or what they think is I_{1} Allow slips on coefficients only	M1
	$\begin{aligned} & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3}\left(x^{2}+3\right)^{\frac{1}{2}}\right) \\ & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{4}{5} x^{2}\left(x^{2}+3\right)^{\frac{1}{2}}+\frac{24}{5}\left(x^{2}+3\right)^{\frac{1}{2}} \end{aligned}$ Any correct expression in terms of x only	A1
	$I_{5}=\frac{1}{5}\left(x^{2}+3\right)^{\frac{1}{2}}\left(x^{4}-4 x^{2}+24\right)+k$ Must include the " $+k$ " but allow other letter e.g. $+c$	A1
		(4)
		Total 10
$\begin{gathered} \text { (b) } \\ \text { Way } 2 \end{gathered}$	NB $I_{1}=\left(x^{2}+3\right)^{\frac{1}{2}}$	
	$I_{3}=\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3} I_{1}$ Applies the reduction formula once to obtain I_{3} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only	M1
	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-2 I_{1}\right)$ Applies the reduction formula again to obtain an expression for I_{5} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only	M1
	E.g. $\begin{aligned} & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3}\left(x^{2}+3\right)^{\frac{1}{2}}\right) \\ & \text { Or e.g. } \\ & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{4}{5} x^{2}\left(x^{2}+3\right)^{\frac{1}{2}}+\frac{24}{5}\left(x^{2}+3\right)^{\frac{1}{2}} \end{aligned}$ Any correct expression in terms of x only	A1
	$I_{5}=\frac{1}{5}\left(x^{2}+3\right)^{\frac{1}{2}}\left(x^{4}-4 x^{2}+24\right)+k$ Must include the " $+k$ " but allow other letter e.g. $+c$	A1

Question Number	Scheme Notes	Marks
(b) Way 3	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5} I_{3}$ Applies the reduction formula once to obtain I_{5} in terms of I_{3} Allow slips on coefficients only	M1
	$\begin{gathered} I_{3}=\int \frac{x^{3}}{\left(x^{2}+3\right)^{\frac{1}{2}}} \mathrm{~d} x \\ u=x^{2}+3 \Rightarrow I_{3}=\int \frac{(u-3)^{\frac{3}{2}}}{u^{\frac{1}{2}}} \frac{\mathrm{~d} u}{2(u-3)^{\frac{1}{2}}}=\frac{1}{2} \int \frac{(u-3)}{u^{\frac{1}{2}}} \mathrm{~d} u=\frac{1}{3} u^{\frac{3}{2}}-6 u^{\frac{1}{2}} \\ =\frac{1}{3}\left(x^{2}+3\right)^{\frac{3}{2}}-6\left(x^{2}+3\right)^{\frac{1}{2}} \\ I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{1}{3}\left(x^{2}+3\right)^{\frac{3}{2}}-6\left(x^{2}+3\right)^{\frac{1}{2}}\right) \end{gathered}$ M1: A credible attempt to find I_{3} and then expresses I_{5} in terms of x A1: Any correct expression in terms of x only	M1A1
	$I_{5}=\frac{1}{5}\left(x^{2}+3\right)^{\frac{1}{2}}\left(x^{4}-4 x^{2}+24\right)+k$ Must include the " $+k$ " but allow other letter e.g. $+c$	A1

Question Number	Scheme	Notes	Marks
7(a)	$5 \mathbf{i}+3 \mathbf{j}-8 \mathbf{k}$ and $2 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k}$ lie in Π_{1}	Identifies 2 correct vectors lying in Π_{1}	B1
	$\mathbf{n}=\left(\begin{array}{r} 5 \\ 3 \\ -8 \end{array}\right) \times\left(\begin{array}{r} 2 \\ -3 \\ -6 \end{array}\right)=$ Attempts the vector product be If no working is shown, look f Or Let $\mathbf{n}=a \mathbf{i}+$ $\begin{aligned} & (a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \cdot(5 \mathbf{i}+3 \mathbf{j}-8 \mathbf{k})=0 \\ & \Rightarrow 5 a+3 b-8 c=0,2 a-3 b-6 c= \end{aligned}$	$=\left(\begin{array}{c} -18-24 \\ -(-30+16) \\ -15-6 \end{array}\right)$ ween 2 correct vectors in Π_{1} or at least 2 correct elements. .g. $\mathbf{j}+c \mathbf{k}$ then $\begin{aligned} & (a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \cdot(2 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k})=0 \\ & =0 \Rightarrow a=2 c, 3 b=-2 c \Rightarrow \mathbf{n}=\ldots \end{aligned}$	M1
	$=\left(\begin{array}{r}-42 \\ 14 \\ -21\end{array}\right)$ or e.g. $\left(\begin{array}{r}6 \\ -2 \\ 3\end{array}\right)$	Correct normal vector	A1
	$(6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \cdot(\mathbf{i}+2 \mathbf{j}+\mathbf{k})=\ldots$ Attempts scalar product between their normal vector and position vector of a point in Π_{1}. Do not allow this mark if the " 5 " (or equivalent) just 'appears'. There must be some evidence for its origin e.g. a. $\mathbf{n}=\ldots$ where \mathbf{a} and \mathbf{n} have been defined earlier. Depends on the first method mark.		dM1
	$6 x-2 y+3 z=5 *$	Correct proof	A1*
			(5)
	Alternative 1 for (a):		
	E.g. Let equation of Π_{1} be $a x+b y+z=c$ 3 points on Π_{1} are $(1,2,1),(3,-1,-5)$ and e.g. $(8,2,-13)$		B1
	$a+2 b+1=c, 3 a-b-5=c, 8 a+2 b-13=c \Rightarrow a=\ldots, b=\ldots, c=\ldots$ Solves simultaneously for a, b and c using correct points		M1
	$\Rightarrow a=2, b=-\frac{2}{3}, c=\frac{5}{3}$	Correct values	A1
	$2 x-\frac{2}{3} y+z=\frac{5}{3}$	Forms Cartesian equation	dM1
	$6 x-2 y+3 z=5 *$	Correct proof	A1*
	Alternative 2 for (a):		
	$(1,2,1) \rightarrow 6 x-2 y+3 z=6-4+3=5$ Shows $(1,2,1)$ lies on Π_{1}		B1
	$\frac{x-3}{5}=\frac{y+1}{3}=\frac{z+5}{-8} \rightarrow \mathbf{r}=$ M1: Converts l to correct parametric form se allow 1 slip with o A1: Corr	$\left(\begin{array}{c}3 \\ -1 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}5 \\ 3 \\ -8\end{array}\right)$ or equivalent en as part of an attempt at this alternative ne of the elements ect form	M1A1
	$6(3+5 \lambda)-2(-1+3 \lambda)+3(-5-8 \lambda)=5$		dM1

	Shows l lies in Π_{1}		
	P lies in Π_{1} and l lies in Π_{1} so All correct with c	$6 x-2 y+3 z=5 *$ onclusion	A1*
(b) Way 1	$d=\frac{\|6(2)-2 k+3(-7)-5\|}{\sqrt{6^{2}+2^{2}+3^{2}}}$	Correct method for the shortest distance	M1
	$=\frac{1}{7}\|-2 k-14\|=\frac{2}{7}\|k+7\|^{*}$	Correct completion	A1*
			(2)
(b) Way 2	Distance O to Π_{1} is $\frac{5}{\sqrt{6^{2}+2^{2}+3^{2}}}$. Distance O to parallel plane containing Q is $\frac{(6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \cdot(2 \mathbf{i}+k \mathbf{j}-7 \mathbf{k})}{\sqrt{6^{2}+2^{2}+3^{2}}}=\frac{-9-2 k}{7}$ $d=\left\|\frac{5}{7}-\frac{-9-2 k}{7}\right\|$ Correct method for the shortest distance		M1
	$=\frac{1}{7}\|2 k+14\|=\frac{2}{7}\|k+7\|^{*}$	Correct completion	A1*
(b) Way 3	$d=\left\|\frac{\overrightarrow{P Q} \cdot \mathbf{n}}{\|\mathbf{n}\|}\right\|=\left\|\frac{(\mathbf{i}+(k-2) \mathbf{j}-8 \mathbf{k}) \cdot(-42 \mathbf{i}+14 \mathbf{j}-21 \mathbf{k})}{\sqrt{42^{2}+14^{2}+21^{2}}}\right\|$ Correct method for the shortest distance		M1
	$=\left\|\frac{-42+14 k-28+168}{49}\right\|=\left\|\frac{14 k+98}{49}\right\|=\frac{2}{7}\|k+7\|^{*}$	Correct completion	A1*
(c)	$\frac{2}{7}\|k+7\|=\frac{\|8(2)-4 k-7+3\|}{\sqrt{8^{2}+4^{2}+1^{2}}}$ Correctly attempts the distance between $(2, k,-7)$ and Π_{2} and sets equal to the result from (a). May see alternative methods here for the distance between $(2, k,-7)$ and Π_{2} e.g. finds the coordinates of a point on Π_{2} e.g. $R(1,1,-7)$ and then finds $\begin{gathered} d=\left\|\frac{\overrightarrow{R Q} \cdot(8 \mathbf{i}-4 \mathbf{j}+\mathbf{k})}{\|8 \mathbf{i}-4 \mathbf{j}+\mathbf{k}\|}\right\|=\left\|\frac{(\mathbf{i}+(k-1) \mathbf{j}) \cdot(8 \mathbf{i}-4 \mathbf{j}+\mathbf{k})}{\sqrt{8^{2}+4^{2}+1^{2}}}\right\|=\left\|\frac{8-4 k+4}{9}\right\|=\left\|\frac{12-4 k}{9}\right\| \\ \frac{2}{7}(k+7)=" \frac{1}{9}(12-4 k) " \Rightarrow k=\ldots \text { or } \frac{2}{7}(k+7)=" \frac{1}{9}(4 k-12) " \Rightarrow k=\ldots \end{gathered}$ Attempts to solve one of these equations where their distance from Q to Π_{2} is of the form $\mathrm{a} k+b$ where a and b are non-zero. or $\begin{aligned} \frac{2}{7}(k+7)= & " \frac{1}{9}(12-4 k) " \Rightarrow \frac{4}{49}(k+7)^{2}=" \frac{1}{81}(12-4 k)^{2} " \\ & \Rightarrow 23 k^{2}-462 k-441=0 \Rightarrow k=\ldots \end{aligned}$ Squares both sides and attempts to solve resulting quadratic. Condone poor attempts at squaring the brackets and there is no requirement to follow the usual guidance for solving the quadratic		M1
			dM1
	$k=-\frac{21}{23}$ or $k=21$	One correct value. Must be 21 but allow equivalent exact fractions for $-\frac{21}{23}$	A1

| $k=-\frac{21}{23}$ and $k=21$ | Both correct values. Must be 21 but
 allow equivalent exact fractions for
 $-\frac{21}{23}$ and no other values. | A1 |
| :--- | :--- | :--- | :--- |

Question Number	Scheme	Notes	Marks
8(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x}{1-x^{2}}$	Correct derivative	B1
	$1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{4 x^{2}}{\left(1-x^{2}\right)^{2}}=\frac{\left(1-x^{2}\right)^{2}+4 x^{2}}{\left(1-x^{2}\right)^{2}}$ Attempts $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$, finds common de numerator condoning sign slips only.	$\frac{x^{4}-2 x^{2}+1+4 x^{2}}{\left(1-x^{2}\right)^{2}} \text { or } \frac{x^{4}+2 x^{2}+1}{\left(1-x^{2}\right)^{2}}$ minator and shows working in the he denominator may be expanded)	M1
	$=\frac{\left(1+x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}}$ or $\left(\frac{1+x^{2}}{1-x^{2}}\right)^{2}$	Fully correct expression with factorised numerator and denominator.	A1
	$\int_{\frac{1}{2}}^{\frac{3}{4}} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\int_{\frac{1}{2}}^{\frac{3}{4}}\left(\frac{1+x^{2}}{1-x^{2}}\right) \mathrm{d} x *$	Fully correct proof with no errors and integral as printed on the question paper but allow $x^{2}+1$ for $1+x^{2}$ and allow $\int_{\frac{1}{2}}^{\frac{3}{4}} \frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)} \mathrm{d} x \text { or } \int_{\frac{1}{2}}^{\frac{3}{4}} \frac{1+x^{2}}{1-x^{2}} \mathrm{~d} x$	A1*
			(4)

Question Number	Scheme	Notes	Marks
(b)	$\frac{\left(x^{2}+1\right)}{\left(1-x^{2}\right)}=-1+\frac{2}{1-x^{2}} \text { or e.g. }-1+\frac{1}{1-x}+\frac{1}{1+x}$ Writes the improper fraction correctly		B1
	$\begin{gathered} \int \frac{k}{1-x^{2}} \mathrm{~d} x= \pm \alpha \ln \frac{1+x}{1-x} \\ \text { Or e.g. } \\ \int \frac{k}{1-x^{2}} \mathrm{~d} x= \pm \alpha \ln (1+x) \pm \alpha \ln (1-x) \end{gathered}$ Achieves an acceptable logarithmic form for $\int \frac{k}{1-x^{2}} \mathrm{~d} x$ (k constant) (may see partial fraction approach). If they use artanh here, this mark and the next mark will become available when they change to logarithmic form e.g. when they substitute the limits later.		M1
	$\int-1+\frac{2}{1-x^{2}} \mathrm{~d} x=-x+\ln \frac{1+x}{1-x}$	Correct integration	A1
	$\left[-x+\ln \frac{1+x}{1-x}\right]_{\frac{1}{2}}^{\frac{3}{4}}=-\frac{3}{4}+\ln 7-\left(-\frac{1}{2}+\ln 3\right)$	Evidence that the given limits have been applied. Condone slips as long as the intention is clear. Depends on the previous M.	dM1
	$\frac{1}{4}+\ln \frac{7}{3}$	cao	A1
			(5)
	Note that a common incorrect approach is: $\begin{aligned} \int \frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)} \mathrm{d} x & =\int\left(\frac{1}{1-x^{2}}+\frac{x^{2}}{1-x^{2}}\right) \mathrm{d} x=\frac{1}{2} \ln \frac{1+x}{1-x}+\ldots \\ & =\left[\frac{1}{2} \ln \frac{1+x}{1-x}+\ldots\right]_{\frac{1}{2}}^{\frac{3}{4}}=\ldots \end{aligned}$ If there is no attempt at $\int\left(\frac{x^{2}}{1-x^{2}}\right) \mathrm{d} x$ this will generally score B0M1A0M0A0 BUT If there is an attempt at $\int\left(\frac{x^{2}}{1-x^{2}}\right) \mathrm{d} x$ (however poor) and evidence that the limits have been applied this will generally score B0M1A0M1A0. Condone slips with the substitution of limits as long as the intention is clear. BUT note that attempts that consider partial fractions such as $\frac{1+x^{2}}{1-x^{2}} \equiv \frac{A}{1-x}+\frac{B}{1+x}$ will generally score no marks - if you are unsure, send to review. Note also that $\frac{1+x^{2}}{1-x^{2}} \equiv \frac{A}{1-x}+\frac{B}{1+x}+C$ is a correct form and could score full marks. Also, use of $\frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)}=\frac{1-x^{2}+2 x^{2}}{1-x^{2}}=1+\frac{2 x^{2}}{1-x^{2}}$ with no attempt to deal with the $\frac{2 x^{2}}{1-x^{2}}$ as an improper fraction as in the main scheme is likely to score no marks.		
			Total 9

Alternative approach to integration in part (b) by substitution:

(b)	$x=\tanh \theta \Rightarrow \int \frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)} \mathrm{d} x=\int \frac{\left(1+\tanh ^{2} \theta\right)}{\left(1-\tanh ^{2} \theta\right)} \operatorname{sech}^{2} \theta \mathrm{~d} \theta$ Substitutes fully		B1
	$\begin{gathered} \int \frac{\left(1+\tanh ^{2} \theta\right)}{\left(1-\tanh ^{2} \theta\right)} \operatorname{sech}^{2} \theta \mathrm{~d} \theta=\int\left(1+\tanh ^{2} \theta\right) \mathrm{d} \theta \\ =\int\left(2-\operatorname{sech}^{2} \theta\right) \mathrm{d} \theta \end{gathered}$ Cancel and applies $\tanh ^{2} \theta=1-\operatorname{sech}^{2} \theta$		M1
	$=\int\left(2-\operatorname{sech}^{2} \theta\right) \mathrm{d} \theta=2 \theta-\tanh \theta$	Correct integration	A1
	$[2 \operatorname{artanh} x-x]_{\frac{1}{2}}^{\frac{3}{4}}=2 \times \frac{1}{2} \ln \left(\frac{1+\frac{3}{4}}{1-\frac{3}{4}}\right)-\frac{3}{4}-\left(2 \times \frac{1}{2} \ln \left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)-\frac{1}{2}\right)$ Evidence that the given limits have been applied. Condone slips as long as the intention is clear. Depends on the previous M.		dM1
	$=-\frac{1}{4}+\ln \frac{7}{3}$	cao	A1
			(5)

Note that a similar approach can be applied to $\int\left(\frac{x^{2}}{1-x^{2}}\right) \mathrm{d} x$

Question Number	Scheme	Notes	Marks
9	$\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, \quad(5 \cos \theta, 4 \sin \theta)$		
(a)	$\begin{gathered} \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-5 \sin \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=4 \cos \theta \\ \frac{2 x}{25}+\frac{2 y}{16} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text { oe } \\ \text { or } \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 x}{25}\left(1-\frac{x^{2}}{25}\right)^{-\frac{1}{2}} \text { oe } \end{gathered}$	Correct derivatives or correct implicit differentiation or correct explicit differentiation.	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \cos \theta}{-5 \sin \theta}$	Divides their derivatives correctly or substitutes and rearranges	M1
	$M_{N}=\frac{5 \sin \theta}{4 \cos \theta}$	Correct perpendicular gradient rule may be implied when they form the normal equation.	M1
	$y-4 \sin \theta=\frac{5 \sin \theta}{4 \cos \theta}(x-5 \cos \theta)$	Correct straight line method (any complete method). Must use their gradient of the normal.	M1
	$5 x \sin \theta-4 y \cos \theta=9 \sin \theta \cos \theta^{*}$ or $9 \sin \theta \cos \theta=5 x \sin \theta-4 y \cos \theta^{*}$	Achieves the printed answer with no errors and allow this answer to be obtained from the previous line. Allow $5 \sin \theta x$ for $5 x \sin \theta$ and $4 \cos \theta y$ for $4 y \cos \theta$.	A1*
	Allow all marks if the gradient is seen a straight line equation) as lon	a function of x and y initially (even in the as this is recovered correctly.	
	Solutions that do not use calculus e.g as $y-4 \sin \theta=\frac{5 \sin \theta}{4 \cos \theta}(x-5 \cos \theta)$ e.g. $a x \sin \theta-b y \sin \theta=\left(a^{2}-b^{2}\right) \operatorname{si}$ result this s But we would accept $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \operatorname{co}}{-5 \sin }$	ust quoting the equation of the normal nd to review however if they just quote $\theta \cos \theta$ and then write down the given res no marks. θ to be quoted for a full solution.	
			(5)
(b)	$b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 1$ F is $(a e, 0$ Or e.g. " $c^{\prime 2}=a^{2} e^{2}=a^{2}-b^{2}$ Fully correct strategy for F (m	$\begin{aligned} & =25\left(1-e^{2}\right) \Rightarrow e=\frac{3}{5} \\ & =\left(5 \times \frac{3}{5}, 0\right) \\ & 25-16 \Rightarrow a^{2} e^{2}=9 \Rightarrow a e=\ldots \end{aligned}$ st be numerical so $(5 e, 0)$ is M0	M1
	$(3,0)$	Correct coordinates. $(\pm 3,0)$ scores A0	A1
			(2)

(c)

$x=\frac{9}{5} \cos \theta \quad$ Correct x coordinate (of Q)	B1
$\begin{array}{c\|l} P F^{2}=(5 \cos \theta-" 3 ")^{2}+(4 \sin \theta)^{2} & \begin{array}{l} \text { Correct application of Pythagoras to } \\ \text { find } P F \text { or } P F^{2} . \text { Their " } 3 " \text { should be } \end{array} \\ \text { or } & \begin{array}{l} \text { positive but allow work in terms of } e \\ \text { e.g. " } 5 e " . \end{array} \end{array}$	M1
$\begin{aligned} & \text { Applies } \sin ^{2} \theta=1-\cos ^{2} \theta \text { to obtain a } \\ & \text { quadratic expression in } \cos \theta \text {. If the } \\ & \text { correct identity is not seen explicitly } \\ & \text { then their working must imply that a } \\ & \text { correct identity has been used. } \\ & \text { Depends on the previous } \mathbf{M} \text {. } \end{aligned}$	dM1
$P F= \pm(5-3 \cos \theta)$ Correct expression for $P F$ or $P F^{2}$ in $P F^{2}=9 \cos ^{2} \theta-30 \cos \theta+25$ terms of $\cos \theta$ with terms collected.	A1
Note that an alternative to using Pythagoras to find $P F$ is to use $P F=e P M$ where M is the foot of the perpendicular from P to the positive directrix. Score M1 for $x=\frac{a}{e}=\frac{5}{3 / 5}\left(=\frac{25}{3}\right)\left(\right.$ not $\left.\pm \frac{25}{3}\right)$ and dM1A1 for $P F=e P M=\frac{3}{5}\left(\frac{25}{3}-5 \cos \theta\right)$	

$$
\begin{gathered}
\frac{|Q F|}{|P F|}=\frac{3-\frac{9}{5} \cos \theta}{5-3 \cos \theta}=\frac{3\left(1-\frac{3}{5} \cos \theta\right)}{5\left(1-\frac{3}{5} \cos \theta\right)} \text { or e.g. } \frac{3}{5} \times \frac{1-\frac{3}{5} \cos \theta}{1-\frac{3}{5} \cos \theta}=\frac{3}{5}=e^{*} \\
\text { or e.g. } \\
\frac{Q F^{2}}{P F^{2}}=\frac{\left(3-\frac{9}{5} \cos \theta\right)^{2}}{9 \cos ^{2} \theta-30 \cos \theta+25}=\frac{9-\frac{54}{5} \cos \theta+\frac{81}{25} \cos ^{2} \theta}{9\left(1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta\right)} \\
25\left(1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta\right) \\
\text { or e.g. }=\frac{9}{25} \times \frac{1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta}{1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta}=\frac{9}{25} \Rightarrow \frac{Q F}{P F}=\frac{3}{5}=e^{*}
\end{gathered}
$$

Fully correct working including factorisation or equivalent leading to showing that

$$
\frac{|Q F|}{|P F|}=e \text { with no errors and a conclusion " }=e " .
$$

Note that the value of e must have been seen earlier e.g. in part (b) or calculated independently somewhere in the question.
Note that this mark depends on a ratio where the numerator and denominator are either both positive or both negative or modulus symbols are present throughout. This does not apply to the second case as both numerator and denominator must be positive as they are squared.

